# Fundamental physics of anisotropic medium

RNDr. Otto Jarolímek, CSc.

#### **Tensors**

- generalization of vector definition
- general theory in n-dimensional space
- theory application for the physical properties of anisotropic materials (especially for single-crystals)  $\rightarrow$  n=3
- tensor's order q
  - $\triangleright$  number of components  $p=n^q$
  - scalar (zeroth order tensor)  $\rightarrow$  p=1
  - vector (first order tensor)  $\rightarrow$  p=3
  - second order tensor  $\rightarrow$  p=9
  - third order tensor  $\rightarrow$  p=27
  - fourth order tensor  $\rightarrow$  p=81

### **Tensors**

- vector:  $T'_i = a_{ij}T_j$ 
  - transforms as the coordinate
- second order tensor:  $T'_{ij}=a_{ik}a_{jl}T_{kl}$ 
  - transforms as the product of two coordinates
- third order tensor:  $T'_{ijk}=a_{il}a_{jm}a_{kn}T_{lmn}$ 
  - transforms as the product of three coordinates
- fourth order tensor:  $T'_{ijkl}=a_{im}a_{jn}a_{ko}a_{lp}T_{mnop}$ 
  - transforms as the product of four coordinates

### **Tensors**

symmetrical second order tensor

$$T_{ij}=T_{ji} \rightarrow 6$$
 components

antisymmetrical second order tensor

$$T_{ij}$$
=- $T_{ji} \rightarrow 3$  components (axial vector!)

 symmetry of higher order tensors can be given by the combinations of two or more indexes (see special examples)

# Examples of the physical quantities with tensor character

- first order tensor (vector)
  - physical "state" quantities (electric field E<sub>i</sub>, electric current density j<sub>i</sub>)
  - material properties (pyroelectric coefficient p<sub>i</sub>)
- second order tensor
  - physical "state" quantities (mechanical stress  $\sigma_{ii}$ , strain  $\epsilon_{ii}$ )
  - material properties (electrical conductivity  $\gamma_{ij}$ , thermal expansion  $\alpha_{ij}$ , dielectric permittivity  $\epsilon_{ii}$ )
- third order tensor
  - material properties only (piezoelectric coefficient d<sub>ijk</sub>)
    - by definition  $d_{ijk}=d_{ikj} \rightarrow 18$  components
- fourth order tensor
  - material properties only (elastic compliance s<sub>ijkl</sub>)
    - by definition  $s_{ijkl}=s_{jikl}=s_{jilk}=s_{jilk} \rightarrow 21$  components

## Symmetry elements and symmetry operations

Could be described by the mathematical group theory.

- rotation axes (twofold, threefold, fourfold and sixfold) → rotation
- inverse rotation axes (threefold, fourfold and sixfold) → inverse rotation
- symmetry plane → mirror
- center of symmetry → center inversion

### **Crystallographic systems and symmetry point groups**

Seven crystallographic systems contain 32 point groups of symmetry.

- triclinic center of symmetry, 2 point groups
- monoclinic 1 twofold rotation or inverse rotation axis, 3 groups
- orthorhombic 3 mutually perpendicular twofold rotation or inverse rotation axes, 3 groups
- tetragonal 1 fourfold rotation or inverse rotation axis, 7 groups
- trigonal (rhombohedral) 1 threefold rotation or inverse rotation axis, 5 groups
- hexagonal 1 hexagonal rotation or inverse rotation axis, 7 groups
- cubic 4 threefold rotation or inverse rotation axes as cube's body diagonals, 5 groups

# Neumann's principle

 Set of symmetry elements for the material characteristics (physical property) must include all symmetry elements of the medium (point group of single-crystal's symmetry), i.e. symmetry of the material properties must be the same or higher than the symmetry of the medium