Random numbers in algorithms

- A deterministic algorithm is a sequence of operations giving the correct answer (or failing to do so in such a way that we know about the failure). Example: matrix inversion by the Gauss-Jordan elimination with full pivoting.
- A Monte Carlo algorithm as a procedure using (pseudo)random number to obtain a result, which is correct with certain probability; typically, a numerical result subject to a stochastic error.
 - Example: Solving the traveling salesman problem by simulated annealing.
- A Las Vegas algorithm uses random numbers to obtain a deterministic result. Example: matrix inversion by the Gauss-Jordan elimination with the pivot element selected at random from several (large enough) pivot candidates.

Example of pseudo random number generator

$$n_i = 7^5 n_{i-1} \mod (2^{31} - 1), \quad r_i = n_i / 2^{31}$$

Monte Carlo integration (naive Monte Carlo)

Example: Calculate π by MC integration

```
INTEGER n total # of points
INTEGER i
INTEGER nu # of points in a circle
REAL x,y coordinates of a point in a sphere
REAL rnd(-1,1) function returning a random number in interval [-1,1)
nu := 0
FOR i := 1 TO n DO
   x := rnd(-1,1)
   y := rnd(-1,1)
   IF x*x+y*y < 1 THEN nu := nu + 1
PRINT "pi=", 4*nu/n area of square = 4
PRINT "std. error=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))
```

Also "random shooting". Generally

$$\int_{\Omega} f(x_1, \dots, x_D) dx_1 \dots dx_D \approx \frac{|\Omega|}{K} \sum_{k=1}^K f(x_1^{(k)}, \dots, x_D^{(k)})$$

where $(x_1^{(k)}, \dots, x_D^{(k)})$ is a random vector from region Ω $(|\Omega| = \text{area, volume, } \dots; \text{ calculation of } \pi: \Omega = (-1, 1)^2, |\Omega| = 4)$

Exercise - Buffon's needle

Let a needle of length l be dropped randomly on a plane ruled with parallel lines d units apart, $l \le d$. The probability that the needle crosses a line is $p = 2l/\pi d$.

Proof:

expression (a < b) gives 1 if the inequality holds true, 0 otherwise

rel. error

$$p = \frac{1}{d/2} \int_0^{d/2} dz \frac{1}{\pi/2} \int_0^{\pi/2} d\theta \left(z < \frac{l}{2} \cos \theta \right) = \frac{1}{d/2} \frac{1}{\pi/2} \int_0^{\pi/2} \frac{l}{2} \cos \theta d\theta = \frac{2l}{\pi d}$$

Usage (δp is the standard error of p)

 $\pi \approx \frac{2l}{pd}$, where $p = \frac{n_{\text{crosses}}}{n_{\text{total}}}$, $\delta p \approx \sqrt{\frac{p(1-p)}{n-1}}$, $\delta \pi = \frac{2l}{pd} \frac{\delta p}{p}$

for me: grid: pic/buffon-grid.pdf and buffon.sh

$$\sum e^{-\beta U(\vec{r}^N)} f(\vec{r}^N) \approx \frac{1}{K} \sum_{k=1}^K f(\vec{r}^{N,(k)})$$

where $\vec{r}^{N,(k)}$ is a random vector with a probability density $\propto e^{-\beta U(\vec{r}^N)}$.

Metropolis algorithm: $\vec{r}^{N,(k+1)}$ generated sequentially from $\vec{r}^{N,(k)}$

Metropolis method (intuitively)

- Choose a particle, i (e.g., randomly)
- Try to move it, e.g.:

$$x_i^{\text{tr}} = x_i + u_{(-d,d)},$$

 $y_i^{\text{tr}} = y_i + u_{(-d,d)},$
 $z_i^{\text{tr}} = z_i + u_{(-d,d)}$

or in/on sphere, Gaussian,...

so that the probability of the reversed move is the same

- \bigcirc Calculate the change in the potential energy, $\Delta U = U^{tr} U$
- \bigcirc If $\Delta U \leq 0$, the change is accepted
 - If $\Delta U \geq 0$, the change is accepted with probability $\exp(-\beta \Delta U)$

Why? Because then it holds for the probability ratio:

new : old =
$$p^{tr}$$
 : $p = \exp(-\beta \Delta U)$

(moves there and back are compared, always the probability of one move = 1, and of the other = Boltzmann probability)

A bit of theory: random variables

 $+\frac{6/13}{s05/2}$

Random variable S gives values in $\{A_i\}$, i=1,...M, with probabilities $\pi(A_i)=\pi_i$. Normalization: $\sum_i \pi_i = 1$

Markov chain is a sequence $S^{(k)}$, $k = 1, ..., \infty$ such that $S^{(k+1)}$ depends only on $S^{(k)}$, or mathematically

$$\pi_j^{(k+1)} = \sum_{i=1}^M \pi_i^{(k)} W_{i \to j}$$
 vector notation: $\boldsymbol{\pi}^{(k+1)} = \boldsymbol{\pi}^{(k)} \cdot \mathbf{W}$

Normalization:

$$\sum_{j=1}^{M} W_{i \to j} = 1 \quad \text{for all } i$$

- Computer network: $\begin{cases} 1. & \text{in order} \\ 2. & \text{out of order} \end{cases}$
- If in order: will crash with 10% probability (the following day is out of order)
- If out of order: gets fixed with 30% probability (the following day is in order)

$$W = \left(\begin{array}{cc} 0.9 & 0.1 \\ 0.3 & 0.7 \end{array}\right)$$

$$\lim_{k\to\infty} \pi^{(k)} = (0.75, 0.25)$$

Profit: $\begin{cases} 2000 & \text{in order} \\ 500 & \text{out of order} \end{cases}$

$$X = \begin{pmatrix} 2000 \\ 500 \end{pmatrix}$$

Averaged profit = $\sum_{i} \pi_i X_i = \boldsymbol{\pi} \cdot \mathbf{X} = 1625$

for me: xoctave waits 3 s to switch desktop

Detailed balance and microreversibility

$$+\frac{8/13}{s05/2}$$

We are looking for
$$W$$
, so that $\pi_i = \frac{\exp[-\beta U(A_i)]}{\sum_i \exp[-\beta U(A_i)]}$

Conditions:

$$W_{i \to j} \ge 0$$
 for all $i, j = 1, ..., M$
 $\sum_{j=1}^{M} W_{i \to j} = 1$ for all $i = 1, ..., M$

$$\pi \cdot \mathbf{W} = \pi$$
 sometimes "detailed balance"

$$\pi_i W_{i \to j} = \pi_j W_{j \to i}$$
 microscopic reversibility (detailed balance)

If

- all states are accessible from an arbitrary state in a finite number of steps with a nonzero probability and
- no state is periodic

then the set of states is called **ergodic** and for any initial state probability distribution $\pi^{(1)}$ there exists a limit $\pi = \lim_{k \to \infty} \pi^{(k)}$

One of solutions (Metropolis):

$$W_{i \to j} = \begin{cases} \alpha_{i \to j} & \text{for } i \neq j \text{ a } \pi_j \geq \pi_i \\ \alpha_{i \to j} \frac{\pi_j}{\pi_i} & \text{for } i \neq j \text{ a } \pi_j < \pi_i \\ 1 - \sum_{k, \, k \neq i} W_{i \to k} & \text{for } i = j \end{cases}$$

Equivalent form:

$$W_{i \to j} = \alpha_{i \to j} \min \left\{ 1, \frac{\pi_j}{\pi_i} \right\} \text{ for } i \neq j$$

where matrix $\alpha_{i \to j} = \alpha_{j \to i}$ describes a trial change of a configuration ... equivalent to the algorithm given above

Algorithm – details

- Choose a particle (lattice site, ...) to move
- \bigcirc $A^{tr} := A^{(k)} + random move (spin) of the chosen particle$
- The configuration is accepted $(A^{(k+1)} := A^{tr})$ with probability min $\{1, e^{-\beta \Delta U}\}$ otherwise rejected:

Version 1	Version 2	Version 3
$u := u_{(0,1)}$	$u := u_{(0,1)}$	IF $\Delta U < 0$
IF $u < \min\{1, e^{-\beta \Delta U}\}$	IF $u < e^{-\beta \Delta U}$	THEN $A^{(k+1)} := A^{tr}$
THEN $A^{(k+1)} := A^{tr}$	THEN $A^{(k+1)} := A^{tr}$	ELSE
$ELSEA^{(k+1)} := A^{(k)}$	$ELSEA^{(k+1)} := A^{(k)}$	$u := u_{(0,1)}$
		IF $u < e^{-\beta \Delta U}$
		THEN $A^{(k+1)} := A^{tr}$
		$ELSEA^{(k+1)} := A^{(k)}$

 \bigcirc k := k + 1 and again and again

*s*05/2

How to choose a particle to move

In a cycle – check the reversibility!

Deterring examples of microreversibility violation:

Three species A, B, C in a ternary mixture moved sequentially in the order of $A-B-C-A-B-C-\cdots$

Sequence: move molecule A – move molecule B – change volume – · · ·

Randomly

Chaos is better than bad control

Heat-bath method

good for lattice models:

$$W_{i \to j} = \frac{\exp(-\beta U_j)}{\sum_{A_k \in \mathcal{C}_{part}}} \text{ for } A_i, A_j \in \mathcal{C}_{part}$$

Usually:

- choose spin/lattice site
- choose a new spin value with a Boltzmann probability (it depends on the neighbourhood)

$$\chi = \frac{\text{number of accepted configurations}}{\text{number of all configurations}}$$

 χ depends on the displament d. Optimal χ depends on the system, quantity, algorithm. Often **0.3** is a good choice. Exception: diluted systems...

LJ (reduced units): T = 1.2, $\rho = 0.8$