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Optical Properties of Semiconductors

l. Introduction to semiconductor physics.

Semiconductors are materials whose
energy gap for excitonic excitation lies
betweer) eV and4 eV.

Materialswith zero energygap are metals
or semimetals

Materials with large gap than 4 eV are
Insulators.



Semiconductors

Periodic Table of “Semiconductor-Forming” Elements
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Bl Elements which crystallize as Semiconductors

L]
N

Elements forming Binary 11I-V Semiconductors
Elements formi.ng Binary II-VI Semiconductors
Elements forming Binary II-VI Semiconductors
Elements forming Binary I-VII Semiconductors
Elements forming Binary IV-VI Semiconductors
Elements forming I-1lI-V1, Chalcopyrite Semiconductors

Elements forming II-VI-\, Chalcopyrite Semiconductors

P. Y. Yu, and M. Cardona, Fundamentals of Semiconductors, Sjanigey Berlin Heidelberg New York, 2003.



1. Band structure

What happens when similar atoms are brought togethe
to form a crystal?

2 ENERGY STATES IN SEMICONDUCTORS Ch. 1
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J. I.Pankove Optical Processes in semiconductors, Prertlal, New Jersey, 1971



Schi dinger equation

AHF =FF

AH= (B2m)+S(P¥2M)+1/2S"(Z.Z:&/|R-R)-

S;i(ZieIn-Ry[) +1/2S5-(e]r-r;-])

A 1. is thepositionof theith electron

A R;is thepositionof thejth nucleus

A p.is momentunof theith electron

A P is momentunof thejth nucleus

A Z is atomicnumberof thejth nucleus

A eistheelectroniccharge

A S meanssummatioronly overnonidenticalpairs




Approximations

1. Separation of electrons into two groups
valence and core electrons Core electrons
are thosein the filled shells Valenceelectron
are those in the incompletely filled shells
Summationl and i in the Hamiltonianis only
overvalenceel.

2. Adiabatic approximation
The ions are much heavigran the electrons,
they move much slowly. Electrons can respect
to ionic motion almost instantaneously;
to electrons the ions are essentially stationary.



Conseqguence of approximations

H:Hion(R)H_le(ri’ I%())'l' I_L-ion(ri’ dR)
Hon(R) describing ionic motion under

iInfluence ionic potential plus the time
averagecdadiabaticelectronicpotential.

H(ri, Ro) I1s Hamiltonianfor electronswith
lons frozen in their equilibrium position
Ro

Heion(ri, dR) Is Hamiltonian known as
electro-phononinteraction



ElectronicHamiltonianH,

H= (&92m) +1/2S’; ;. (e|r;-r; ) -
S, (Z&A|r-Ry))
We have more then #batoms in cn?.
This Is impossible to solve.

Meani field approximation

We will assume that every electron experiences
the same average potential V(r).



A
A
A

One electronSchi dinger equation

_IleF n(r):[(p2/2m)+V(r)] F n(r):EnF n(r)
H, IS one electron Hamiltonian

- (r) andE, denote, respectivelywvavefuctionand

energy of an electron in agigenstatelabeled by n.

A Next step is determination of the potential V(r).
V(r) depends on a symmetry of a crystal.



Symmetry of the crystal

A Translation symmetry.
A Rotational symmetry.
A Reflection symmetry.

The most important symmetry is the translation
symmetry. We can define translation operatgy T

TH(r)=f(r+R), whereRis a translation vector.

When a particle movesin a periodic potential its
wavefunctioncan be expressedn a form known as
Blochfunction.



Bloch function.

A Bloch function for one dimensional periodic
potential:

F (X)=expikx) Uy(X)
Where exp(ikx) Is plane wave, k Is wave vectgg)us
periodic function ¥x)= y(x+nR), nis integer and R Is
translation period.

F Jsmodified plane wave.

TF (X)F (x+R=exp(kR F (x)
F (X) iseigenfuctionof T, with eigenvaluexp(ikR



Solution ofSch R A yeguatiNdH, F = E F

A H,.is invariant under translation by R.

A H,.commutes with & [H, . Tx-TaH,]=0

A Eigenfunctiorof H,,can expressed also as
eigenfuctionof Ty.

A Eigenfunctiorof H,.can expressed as a sum of Bloch
function:

A F (X)=SAF ()5 Aexpliky) uy(x)
wherelis constant



Electronic band structure

A A plot of the electron energies in
HyeF o(N=[E72m)+V ()] F (N=EF (1)
versus Kk Is known as thledectronic band structureof
the crystal.

A The band structure plot in which k is allowed to vary
all possible values extended zone scheme

A Reduced zone schenis zone where k is in in the
Interval [cp/R,#/R]. It caused that the choice of k is
not unique. It is seen front ,(x)=expikx) u,(X).

K, k+(pn/R) and k(Z2pn/R) will satisfy this relation.

The region of ispace defined bycp/R,#/R] is called
the first Brillouinzone.



Electronic band structure

A All was done in ondimensional and it can be
easily generalized to three dimension.

A Results: E=h2k2/2m
h™ is h/2, m Is effective mass



Hole

A If we want to move electrons in valence band a few
electrons at least one have to missing.
There are 1& electrons in cn¥, that is why more
convenient Is introduce a hole. A filled valence band
with one missing electron can be regarded as a banc
containing onehole. Hole has positive charges and
mass which is different from the effective mass of
electron.



Electronic band structure

LPelanE WP =+ f Sy Gl = [dzYAYyAaOSysyN aLIS{TONRa] 2L



Important points in kspace.

A Gpoint k=0
Intersection point in direction [xxx] with the first
Brillouinezone is labeled:

A [100] directionG---X
A [111] directionG---L
A [110] directionG---K




Examples of the Si electronic band structure

Energy [eV]

Wavevector k

Fig. 2.10. Electronic band structure of Si calculated by the pseudopotential technique. The

solid and the dotted lines represent calculations with a nonlocal and a local pseudopoten-
tial, respectively. [Ref. 2.8, p. 81]

P. Y. Yu, and M. Cardona, Fundamentals of Semiconductors, SiMantgey Berlin, 2003.



Examples of th&eelectronic band structure
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Fig. 2.13. Electronic band structure of Ge calculated by the pseudopotential technique.
The energy at the top of the filled valence bands has been taken to be zero. Note that,
unlike in Fig. 2.10, the double group symmetry notation is used [Ref. 2.8, p. 92]

P. Y. Yu, and M. Cardona, Fundamentals of Semiconductors, Sjmanizey Berlin, 2003



Examples of th&aAselectronic band structure

P. Y. Yu, and M. Cardona, Fundamentals of Semiconductors, Sjvanigey Berlin, 2003.



